Massage & Bodywork

January/February 2013

Issue link:

Contents of this Issue


Page 105 of 140

Deep-tissue massage feels a certain way when I apply it. I think of it not as an independent massage Breaking Down Big Words When I think about deep-tissue massage, concepts like thixotropy, viscoelasticity, piezoelectricity, adhesiveness, and tensegrity float around in my head. These concepts were introduced to the massage world by people with really big brains (e.g., Deane Juhan, Thomas Myers, Ida Rolf, Janet Travell), and even though I understand these concepts on a simpler level than the originators did, they inform my thinking about deep-tissue work. Thixotropy You may remember the term thixotropy from a course on myofascial work. It is a phenomenon in which gels become more fluid when they are stirred up and more solid when they are left undisturbed. When it comes to connective tissue, especially fascia, the ground substance has the unique ability to move between a fluid, sol state to a viscous, gel state. Regular exercise, physical labor, stretching, proper hydration, and good nutrition promote a fluid, sol state in fascia. The heat created in the tissue by movement warms and stirs the ground substance. On the other hand, a sedentary lifestyle, poor hydration, poor nutrition, little physical movement, and tissue trauma related to injury cause the ground substance to cool, thicken, and enter a stiffened gel state, which can in turn lead to pain, decreased range of motion, patterns of tension in tissue that lead to postural imbalances, a greater risk for injury, and overall lethargy. The system, but as a way to approach all soft-tissue structures. application of massage techniques that compress, lift, stretch, twist, and vibrate the tissue mechanically stir the ground substance and raise energy levels in the tissue, thereby reducing the possibility of these negative conditions. Viscoelasticity Viscoelasticity is also a cool term. It can be broken down into the words viscous (thick, sticky, gummy) and elastic (expandable, flexible, stretchy). If a substance is viscous, it will become deformed, and remain deformed, when an outside force manipulates it. Imagine compressing a piece of clay with your fist. The clay will flatten and remain flattened. If a substance is elastic it will deform when manipulated by an outside force but snap back into its original shape when the outside force is removed (think of pulling and releasing a rubber band). Connective tissue is "plastic," whereas muscle is "elastic." When connective tissue is deformed by an outside force, like deep massage techniques or stretching, the tissue will remain in the deformed state after the outside force has been removed for a certain period of time, then slowly return to its original shape. This is why frequent massage and adaptations in movement patterns can lead to positive long-term changes in the shape and length of fascia. Piezoelectricity Here's a term that's fun to say: piezoelectricity, which means "pressure electricity." It refers to the ability of living tissue to generate electrical potentials in response to mechanical deformation, including activities like dancing, running, walking or any other weight-bearing movement, or the manipulation of soft tissue or bone such as that which might occur during a massage or chiropractic session. Research has demonstrated that collagen, elastin, hyaluronic acid (found in connective tissue), keratin, and the actin and myosin in skeletal muscles exhibit piezoelectric properties.1 It is believed that these electrical potentials stir ground substance and improve the health of connective tissue. One common example is the use of electrical machines that simulate piezoelectricity and increase osteogenesis to speed the healing of fractures.2 Massage stimulates soft tissue in a positive way, leading to improved tissue health.3 See what benefits await you. 103

Articles in this issue

Links on this page

Archives of this issue

view archives of Massage & Bodywork - January/February 2013